Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation

نویسندگان

  • Ying SHI
  • Jonathan NIMMO
  • Junxiao ZHAO
چکیده

The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation

For a generalized super KdV equation, three Darboux transformations and the corresponding Bäcklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the Bäcklund–Darboux transformations and the corresponding discrete system are considered for Kupershmidt’s super KdV equation....

متن کامل

A noncommutative semi-discrete Toda equation and its quasideterminant solutions

A noncommutative version of the semi-discrete Toda equation is considered. A Lax pair and its Darboux transformations and binary Darboux transformations are found and they are used to construct two families of quasideterminant solutions.

متن کامل

Integrable Discretisations for a Class of Nonlinear Schrödinger Equations on Grassmann Algebras

Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of thes...

متن کامل

un 2 00 6 Darboux transformations for a 6 - point scheme ∗

We introduce (binary) Darboux transformation for general differential equation of the second order in two independent variables. We present a discrete version of the transformation for a 6-point difference scheme. The scheme is appropriate to solving a hyperbolic type initial-boundary value problem. We discuss several reductions and specifications of the transformations as well as construction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017